a2zpapers.com

Exam. Code : 103201 Subject Code : 1308

B.A./B.Sc. 1st Semester PHYSICS (Mechanics) Paper—A

Time Allowed—Three Hours] [Maximum Marks—35

Note :— Section A is compulsory. Attempt **ONE** question from each of the Sections B, C, D and E.

SECTION-A

- I. 1. What does the term translational invariance imply?
 - 2. Prove that $\hat{\mathbf{r}} \times \hat{\mathbf{\theta}} = \hat{\mathbf{\phi}}$.
 - 3. What are turning points ? What are the number of turning points in an ellipse ?
 - 4. What do you mean by Gallilean Invariance ?
 - 5. No Cyclones are set up at equator. Explain.
 - 6. Define impact parameter. Give its significance.
 - 7. Define precession.

1×7=7

SECTION-B

- II. (i) Derive an expression for the velocity of a particle moving in spherical polar coordinates. 5
 - (ii) The spherical polar coordinates of a point are (16, 60°, 30°). Find the Cartesian Coordinates.

2

OR

1

41(2117)/BSS-22598

(Contd.)

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab

a2zpapers.com

III. Show that the rotational invariance of space leads to law of conservation of angular momentum. 7

SECTION-C

- IV. (i) Show that a two body central force problem can be reduced to an equivalent one body problem.
- (ii) Using differential equation of the orbit under central force. Find the force law if the orbit $r = e^{b\theta}$.

OR OLD STREET OF OR

V. Determine the turning points in the trajectory of a particle moving under central force. Show how energy is related to its shape.
7

SECTION-D

VI. Derive an expression for the force acting on a particle in a rotating frame.7

OR

VII. Find the expression for deviation of a freely falling body from vertical due to coriolis force. 7

SECTION-E

VIII. Find an expression for Rutherford scattering process.

OR

IX. Show that the angular momentum \vec{L} of a rigid body is given by $\vec{L} = \vec{I}\vec{\omega}$ where $\vec{\omega}$ is angular velocity. Show that \vec{I} is a tensor of second rank. 7

41(2117)/BSS-22598

2

6000

7

www.a2zpapers.com www.a2zpapers.com oad free old Question papers gndu, ptu hp board, punjab 1